Solubilities of La and Ni on LaNiO₃ in Li/K Carbonate Eutectic with La₂O₃

Koichi Matsuzawa,*1 Shang Zhai,1 Ken-ichiro Ota,2 and Shigenori Mitsushima1

¹Chemical Energy Laboratory, Yokohama National University, 79-5 Tokiwadai, Hodogava-ku, Yokohama, Kanagawa 240-8501

²Green Hydrogen Research Center. Yokohama National University.

79-5 Tokiwadai, Hodogava-ku, Yokohama, Kanagawa 240-8501

(Received May 1, 2012; CL-120379; E-mail: kmatsu@ynu.ac.jp)

The solubilities of La and Ni on LaNiO₃ in Li/K carbonate eutectic with La₂O₃ have been investigated. The solubilities of La and Ni were 1.9×10^{-2} (mole fraction) and 1.2×10^{-5} (mole fraction) under CO₂/O₂ of 0.7/0.3 at 923 K. The extraction of Ni from LaNiO₃ in molten carbonate saturated with La₂O₃ was almost 57% lower than that from NiO in a molten carbonate without La₂O₃.

Since molten carbonate fuel cells (MCFCs) can directly use various fuels including carbon, have high energy conversion efficiency, and do not use precious metals as a catalyst, they are starting to be used as dispersed power plants.¹ In order to increase their use, the cathode material durability should be improved. There are many materials proposed as an alternative cathode, but NiO is still used as a cathode material for conventional MCFC power plants.²

Especially, during high CO₂ pressure operation, the occurrence of an internal short circuit, which is called Ni shorting, is a big problem concerning the lifetime of MCFCs.³ Since all elemental processes concerning the Ni shorting are related to the Ni²⁺ ion, the reduction of the cathode dissolution would be an essential approach to prevent the Ni shorting. There are two ways to reduce the solubility of Ni; one is to control the activity of nickel in the electrode material. The other is to control the acid-base equilibrium of the melt to decrease the solubility of Ni. In the case of lanthanum nickel compounds, such as LaNiO₃, in the Li/Na carbonate eutectic with lanthanum oxide, the concentration of the Ni ion was drastically lower than that in contact with NiO in the Li/Na carbonate eutectic by both effects of the activity of the Ni ion and the acid-base equilibrium of the molten carbonate.⁴ However, the extraction of Ni from LaNiO₃ by the Li/K carbonate eutectic with La2O3 has not been investigated.

In this study, as the Li/K carbonate electrolyte is the conventional electrolyte of MCFCs, the solubilities of La and Ni on LaNiO₃ in Li/K carbonate eutectic saturated with La_2O_3 have been investigated.

The LaNiO₃ powders were prepared by precipitation.⁴ The LaNiO₃ pellet ($\phi = 10 \text{ mm}$) for solubility measurement was prepared by sintering at 1023 K for 40 h in an electric muffle furnace (KM-160, Advantec[®], Japan). The sample was identified before and after the immersion in the molten carbonate by X-ray diffraction (XRD; XRD-6000, Shimadzu, Japan).

The Li/K carbonate eutectic with and without La₂O₃ were prepared as follows: Li₂CO₃ (Guaranteed reagent, Junsei Chemical Co., Japan) and K₂CO₃ (Guaranteed reagent, Junsei Chemical Co., Japan) of $62/38 \mod \%$ with and without excess amounts of La₂O₃ (99.9%, Kojundo Chemical Laboratory Co.,

Figure 1. Dependence of C_{La} on p_{CO_2} in Li/K carbonate eutectic without LaNiO₃ at 923 K under p_{O_2} of 0.3 atm (\bigcirc : Li/K, \square : Li/Na).

Japan) were mixed in a high-purity alumina crucible in a dry box. The molten carbonate was refined by vacuum drying and CO₂ bubbling.^{4,5} The partial pressure of CO₂ (p_{CO_2}) was varied from 0.1 to 0.7 atm while the partial pressure of O₂ (p_{O_2}) and the temperature were kept constant at 0.3 atm and 923 K, respectively. The concentration of La and Ni was determined by ICP-AES (SPS3000, SII, Japan).

The concentration of La was saturated after 250 h operation at 923 K. The saturated concentration was defined as the solubility of La (CLa) in the molten Li/K carbonate. Figure 1 shows the dependence of C_{La} on the p_{CO_2} in the molten Li/K carbonate without LaNiO₃ at 923 K. The dependence of C_{La} on the p_{CO_2} in the Li/Na carbonate eutectic is also shown in Figure 1.⁴ The C_{La} was 1.9×10^{-2} (mole fraction) in the molten Li/K carbonate at the p_{O_2}/p_{CO_2} of 0.3/0.7, and almost two times greater than that in the molten Li/Na carbonate (= 1.0×10^{-2} (mole fraction)). The dependence of C_{La} on the p_{CO_2} in molten Li/K carbonate was almost the same as that in the molten Li/Na carbonate (=1.0). Since the stable phase of the lanthanum oxide was La₂O₂CO₃ in both the Li/Na and Li/Na/K carbonate eutectic at the p_{O_2}/p_{CO_2} of 0.3/0.7 at 923 K,^{4,6} the dissolution reactions of La2O2CO3 in molten Li/Na and Li/Na/K carbonates would be dominated by the acidic dissolution without redox reaction in the high-pressure region. The reaction could be expressed as follows:4,6

$$La_2O_2CO_3(s) + 2CO_2(g) \rightleftharpoons 2La^{3+}(l) + 3CO_3^{2-}(l)$$
 (1)

Equation 1 shows that the solubility of La^{3+} is proportional to the p_{CO_2} .

Figure 2. Dissolution curves: $C_{\text{Ni}'}$ from LaNiO₃ by Li/K carbonate eutectic saturated with La₂O₃ at 923 K under $p_{\text{O}_2}/p_{\text{CO}_2}$ of 0.3/0.7 (\bullet : LaNiO₃, ---: C_{Ni} from NiO in the melt without La₂O₃).

Figure 3. Dependence of C_{Ni} on p_{CO_2} in Li/K carbonate eutectic with and without La₂O₃ at 923 K under p_{O_2} of 0.3 atm (\blacksquare : NiO in Li/K eut. \oplus : LaNiO₃ in Li/K eut. with La₂O₃).

Figure 2 shows the dissolution curves of Ni; that is, the C_{Ni} in contact with LaNiO3 in the Li/K carbonate eutectic with La_2O_3 for the p_{O_2}/p_{CO_2} of 0.3/0.7 at 923 K as a function of time. $C_{\rm Ni}$ in contact with NiO in the Li/K carbonate eutectic is also shown in Figure 2.⁵ The C_{Ni}' in contact with LaNiO₃ showed a steady value of 1.3×10^{-5} (mole fraction) over 100 h. Though the C_{Ni} in contact with LaNiO₃ in Li/Na carbonate eutectic saturated with La2O3 was 90% lower that in contact with NiO $(=1.2 \times 10^{-5} \text{ (mole fraction)})$ under the same conditions,⁷ it was 57% lower than that in contact with NiO (= 3.0×10^{-5} (mole fraction)). As the melt became basic by the addition of La_2O_3 , the C_{Ni} in contact with LaNiO₃ decreased more than that in contact with NiO. Since the dissolution of Ni in molten carbonate follows the acid dissolution,⁵ the Ni concentration would become low when the molten carbonate becomes basic. Besides, the activity of Ni in LaNiO3 was also different from that in NiO.

Figure 3 shows the dependence of $C_{\rm Ni}$ in contact with LaNiO₃ on the $p_{\rm CO_2}$ in the Li/K carbonate eutectic saturated with La₂O₃ at 923 K. The dependence of the $C_{\rm Ni}$ of NiO on the $p_{\rm CO_2}$ in the Li/K carbonate eutectic is also shown in Figure 3.⁶ The $C_{\rm La}$ in saturated La₂O₃ adding molten Li/K carbonates with LaNiO₃ was also the same as that without LaNiO₃ in saturated La₂O₃

adding Li/K in molten carbonates as shown in the Figure 1. The slope of the log C_{Ni} in contact with LaNiO₃ on the log p_{CO_2} was 0.75 in Figure 3, and it was different from the C_{Ni} in contact with NiO on the p_{CO_2} in the molten Li/K carbonate without La₂O₃. The slope of the log C_{Ni} in contact with NiO was 1.0. Since the slope of the log C_{Ni} in Li/Na carbonate eutectic with La₂O₃ was also 1.0,^{6,7} the molten Li/K carbonates might be more effective than molten Li/Na carbonates to reduce the C_{Ni} under high CO₂ pressure opreation.

In the high p_{CO_2} region, the dissolution mechanism of NiO in the molten carbonate was dominated by the acidic dissolution as follows:

$$NiO(s) + CO_2(g) \rightleftharpoons Ni^{2+}(l) + CO_3^{2-}(l)$$
 (2)

Equation 2 shows that the C_{Ni} is proportional to the p_{CO_2} . Equation 2 was divided into the following equations:

$$NiO(s) \rightleftharpoons Ni^{2+}(l) + O^{2-}(l)$$
(3)

$$\operatorname{CO}_2(g) + \operatorname{O}^{2-}(l) \rightleftharpoons \operatorname{CO}_3^{2-}(l) \tag{4}$$

For LaNiO₃, the C_{Ni} was obviously depended on the p_{CO_2} , but its slope was different from that for NiO. If the stable phase of nickel on LaNiO₃ would be the same as that on NiO as Ni²⁺ in the molten carbonate with La₂O₃, the dissolution reaction of LaNiO₃ could be described by the following equation.

$$4\text{LaNiO}_{3}(s) + 10\text{CO}_{2}(g)$$

$$\Rightarrow 4\text{La}^{3+}(l) + 4\text{Ni}^{2+}(l) + 10\text{CO}_{3}^{2-}(l) + \text{O}_{2}(g) \quad (5)$$

Since the C_{La} might be proportional to the p_{CO_2} in the Li/K carbonate eutectic as shown in eq 1, the activity of La³⁺: [La³⁺] would be expressed by the following equation:

$$[\operatorname{La}^{3+}] = K_1 \cdot p_{\operatorname{CO}_2} \tag{6}$$

where K_1 is the equilibrium constant of eq 1. On the other hand, the activity of Ni²⁺: [Ni²⁺] in eq 5 would be described by the following equation:

$$[Ni^{2+}] = K_5 \cdot p_{O_2}^{-1/4} \cdot p_{CO_2}^{5/2} \cdot [La^{3+}]^{-1}$$
(7)

where K_5 is the equilibrium constant of eq 5. Since the C_{La} in this melt was almost same as the C_{La} in the melt without LaNiO₃ as shown in Figure 1, eq 6 was substituted into eq 7, and then eq 8 was obtained as follows:

$$[Ni^{2+}] = K_3 \cdot K_1^{-1} \cdot p_{O_2}^{-1/4} \cdot p_{CO_2}^{3/2}$$
(8)

The slope of log C_{Ni} in contact with LaNiO₃ vs. the log p_{CO_2} should be 1.5 if the eq 8 reaction occurs under this condition. However, in this study, the slope of log C_{Ni} in contact with LaNiO₃ was 0.75; therefore, it was difficult to explain the dissolution mechanism of LaNiO₃ in the Li/K carbonate eutectic with La₂O₃ at 923 K. It might be implied that the LaNiO₃ was dissolved into the molten carbonate as a cation of the oxynickel ion.^{7–9}

Since the cationic mole fraction of Ni in LaNiO₃ is 0.5, we could expect that the reduction of the Ni solubility is 50% that is very close to our result.³ The reduction of C_{Ni} in contact with LaNiO₃ might be caused by the reduction of the Ni activity in a solid.

Figure 4 shows the XRD patterns of LaNiO₃ before and after immersion. Si powder was also contained in order to calculate the lattice constant of LaNiO₃. Most peaks were identified as LaNiO₃ after immersion for 2000 h, and the lattice constants of

Figure 4. XRD patterns of LaNiO₃ before immersion in molten carbonates (\odot : LaNiO₃, \Box : NiO, \triangle : Si) (a: after immersion, b: before immersion).

the LaNiO₃ before and after the immersion were 3.86 and 3.82 Å, respectively. The lithiation of the LaNiO₃ would occur during the immersion for 2000 h in the molten carbonate, and the lattice constant might slightly decrease during the immersion.

Overall, since the solubilities of the Ni ion was 57% lower than that on NiO, the LaNiO₃ with La_2O_3 addition might be a promising alternative material as the cathode of MCFCs.

References

- S. McPhail, A. Moreno, R. Bove, *International Staus of* Molten Carbonate Fuel Cell (MCFC) Technology, ENEA, Rome, 2008, Report RSE/2009/181.
- 2 E. Antolini, *Appl. Energy* **2011**, *88*, 4274.
- 3 Y. Mugikura, T. Abe, S. Yoshioka, H. Urushibata, *J. Electrochem. Soc.* **1995**, *142*, 2971.
- 4 K. Matsuzawa, Y. Akinaga, S. Mitsushima, K.-i. Ota, J. Power Sources 2011, 196, 5007.
- 5 K.-i. Ota, S. Mitsushima, S. Kato, S. Asano, H. Yoshitake, N. Kamiya, J. Electrochem. Soc. 1992, 139, 667.
- 6 K. Matsuzawa, T. Mizusaki, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Power Sources 2005, 140, 258.
- 7 S. Mitsushima, K. Matsuzawa, N. Kamiya, K.-i. Ota, *Electrochim. Acta* 2002, 47, 3823.
- 8 M. L. Orfield, D. A. Shores, J. Electrochem. Soc. 1989, 136, 2862.
- 9 M. L. Orfield, D. A. Shores, J. Electrochem. Soc. 1988, 135, 1662.